
SensorAble_ ML_DL and Autistic Neurocognitive Processes
No se pudo agregar al carrito
Add to Cart failed.
Error al Agregar a Lista de Deseos.
Error al eliminar de la lista de deseos.
Error al añadir a tu biblioteca
Error al seguir el podcast
Error al dejar de seguir el podcast
-
Narrado por:
-
De:
Acerca de esta escucha
The research paper "Refining the ML/DL Argument for the SensorAble Project" by Dr David Ruttenberg and others who investigate the application of Machine Learning (ML) and Deep Learning (DL) within the SensorAble project to better understand and support autistic individuals.
The authors propose using Multimodal Learning Analytics (MMLA) to capture diverse sensory data related to distractibility and anxiety in autistic individuals. The study explores whether ML/DL is essential for processing this complex, multi-sourced data to model neurocognitive processes or if more traditional Artificial Intelligence (AI) methods would suffice.
Ultimately, the paper aims to frame research questions that align MMLA, ML/DL, and SensorAble to develop practical tools, while also considering ethical implications and the balance between heuristic and analytic decision-making processes.