Runx1 Drives Cardiomyocyte Cell Cycle Activation Podcast Por  arte de portada

Runx1 Drives Cardiomyocyte Cell Cycle Activation

Runx1 Drives Cardiomyocyte Cell Cycle Activation

Escúchala gratis

Ver detalles del espectáculo

Acerca de esta escucha

In our latest episode, Executive Editor Kara Hansell Keehan interviews lead author Dr. Michaela Patterson and first author Kaelin Akins (both at the Medical College of Wisconsin) along with expert Dr. Ana Vujic (University of Cambridge) about the new study by Akins et al. Given that the heart has limited regenerative potential, repairing damage to cardiomyocytes after a heart attack is particularly challenging. Cardioregeneration researchers worldwide are searching for potential targets that can stimulate cardiomyocyte proliferation and cardiac regeneration. However, because cardiomyocytes can undergo incomplete cell division, multinucleation, and polyploidization, it is difficult to study true cardiomyocyte proliferation. Akins et al. examined the effect of Runx1 on cardiomyocyte cell cycle during postnatal development and cardiac regeneration using cardiomyocyte-specific gain- and loss-of-function mouse models. Listen now to learn more about how the authors determined that Runx1 is sufficient but not required for cardiomyocyte cell cycle activation.

Kaelin A. Akins, Michael A. Flinn, Samantha K. Swift, Smrithi V. Chanjeevaram, Alexandra L. Purdy, Tyler Buddell, Mary E. Kolell, Kaitlyn G. Andresen, Samantha Paddock, Sydney L. Buday, Matthew B. Veldman, Caitlin C. O’Meara, Michaela Patterson Runx1 is sufficient but not required for cardiomyocyte cell-cycle activation Am J Physiol Heart Circ Physiol, published July 21, 2024. DOI: 10.1152/ajpheart.00782.2023

adbl_web_global_use_to_activate_T1_webcro805_stickypopup
Todavía no hay opiniones