• 173 - Pendo’s CEO on Monetizing an Analytics SAAS Product, Avoiding Dashboard Fatigue, and How AI is Changing Product Work
    Jul 8 2025

    Todd Olson joins me to talk about making analytics worth paying for and relevant in the age of AI. The CEO of Pendo, an analytics SAAS company, Todd shares how the company evolved to support a wider audience by simplifying dashboards, removing user roadblocks, and leveraging AI to both generate and explain insights. We also talked about the roles of product management at Pendo. Todd views AI product management as a natural evolution for adaptable teams and explains how he thinks about hiring product roles in 2025. Todd also shares how he thinks about successful user adoption of his product around “time to value” and “stickiness” over vanity metrics like time spent.

    Highlights/ Skip to:

    • How Todd has addressed analytics apathy over the past decade at Pendo (1:17)
    • Getting back to basics and not barraging people with more data and power (4:02)
    • Pendo’s strategy for keeping the product experience simple without abandoning power users (6:44)
    • Whether Todd is considering using an LLM (prompt-based) answer-driven experience with Pendo's UI (8:51)
    • What Pendo looks for when hiring product managers right now, and why (14:58)
    • How Pendo evaluates AI product managers, specifically (19:14)
    • How Todd Olson views AI product management compared to traditional software product management (21:56)
    • Todd’s concerns about the probabilistic nature of AI-generated answers in the product UX (27:51)
    • What KPIs Todd uses to know whether Pendo is doing enough to reach its goals (32:49)
    • Why being able to tell what answers are best will become more important as choice increases (40:05)

    Quotes from Today’s Episode

    • “Let’s go back to classic Geoffrey Moore Crossing the Chasm, you’re selling to early adopters. And what you’re doing is you’re relying on the early adopters’ skill set and figuring out how to take this data and connect it to business problems. So, in the early days, we didn’t do anything because the market we were selling to was very, very savvy; they’re hungry people, they just like new things. They’re getting data, they’re feeling really, really smart, everything’s working great. As you get bigger and bigger and bigger, you start to try to sell to a bigger TAM, a bigger audience, you start trying to talk to the these early majorities, which are, they’re not early adopters, they’re more technology laggards in some degree, and they don’t understand how to use data to inform their job. They’ve never used data to inform their job. There, we’ve had to do a lot more work.” Todd (2:04 - 2:58)
    • “I think AI is amazing, and I don’t want to say AI is overhyped because AI in general is—yeah, it’s the revolution that we all have to pay attention to. Do I think that the skills necessary to be an AI product manager are so distinct that you need to hire differently? No, I don’t. That’s not what I’m seeing. If you have a really curious product manager who’s going all in, I think you’re going to be okay. Some of the most AI-forward work happening at Pendo is not just product management. Our design team is going crazy. And I think one of the things that we’re seeing is a blend between design and product, that they’re always adjacent and connected; there’s more sort of overlappiness now.” Todd (22:41 - 23:28)
    • “I think about things like stickiness, which may not be an aggregate time, but how often are people coming back and checking in? And if you had this companion or this agent that you just could not live without, and it caused you to come into the product almost every day just to check in, but it’s a fast check-in, like, a five-minute check-in, a ten-minute check-in, that’s pretty darn sticky. That’s a good metric. So, I like stickiness as a metric because it’s measuring [things like], “Are you thinking about this product a lot?” And if you’re thinking about it a lot, and like, you can’t kind of live without it, you’re going to go to it a lot, even if it’s only a few minutes a day. Social media is like that. Thankfully I’m not addicted to TikTok or Instagram or anything like that, but I probably check it nearly every day. That’s a pretty good metric. It gets part of my process of any products that you’re checking every day is pretty darn good. So yeah, but I think we need to reframe the conversation not just total time. Like, how are we measuring outcomes and value, and I think that’s what’s ultimately going to win here.” Todd (39:57)

    Links

    • LinkedIn: https://www.linkedin.com/in/toddaolson/
    • X: https://x.com/tolson
    • todd@pendo.io
    Más Menos
    44 m
  • 172 - Building AI Assistants, Not Autopilots: What Tony Zhang’s Research Shows About Automation Blindness
    Jun 24 2025

    Today on the podcast, I interview AI researcher Tony Zhang about some of his recent findings about the effects that fully automated AI has on user decision-making. Tony shares lessons from his recent research study comparing typical recommendation AIs with a “forward-reasoning” approach that nudges users to contribute their own reasoning with process-oriented support that may lead to better outcomes. We’ll look at his two study examples where they provided an AI-enabled interface for pilots tasked with deciding mid-flight the next-best alternate airport to land at, and another scenario asking investors to rebalance an ETF portfolio. The takeaway, taken right from Tony’s research, is that “going forward, we suggest that process-oriented support can be an effective framework to inform the design of both 'traditional' AI-assisted decision-making tools but also GenAI-based tools for thought.”

    Highlights/ Skip to:

    • Tony Zhang’s background (0:46)
    • Context for the study (4:12)
    • Zhang’s metrics for measuring over-reliance on AI (5:06)
    • Understanding the differences between the two design options that study participants were given (15:39)
    • How AI-enabled hints appeared for pilots in each version of the UI (17:49)
    • Using AI to help pilots make good decisions faster (20:15)
    • We look at the ETF portfolio rebalancing use case in the study (27:46)
    • Strategic and tactical findings that Tony took away from his study (30:47)
    • The possibility of commercially viable recommendations based on Tony’s findings (35:40)
    • Closing thoughts (39:04)

    Quotes from Today’s Episode

    • “I wanted to keep the difference between the [recommendation & forward reasoning versions] very minimal to isolate the effect of the recommendation coming in. So, if I showed you screenshots of those two versions, they would look very, very similar. The only difference that you would immediately see is that the recommendation version is showing numbers 1, 2, and 3 for the recommended airports. These [rankings] are not present in the forward-reasoning one [airports are default sorted nearest to furthest]. This actually is a pretty profound difference in terms of the interaction or the decision-making impact that the AI has. There is this normal flight mode and forward reasoning, so that pilots are already immersed in the system and thinking with the system during normal flight. It changes the process that they are going through while they are working with the AI.” Tony (18:50 - 19:42)
    • “You would imagine that giving the recommendation makes your decision faster, but actually, the recommendations were not faster than the forward-reasoning one. In the forward-reasoning one, during normal flight, pilots could already prepare and have a good overview of their surroundings, giving them time to adjust to the new situation. Now, in normal flight, they don’t know what might be happening, and then suddenly, a passenger emergency happens. While for the recommendation version, the AI just comes into the situation once you have the emergency, and then you need to do this backward reasoning that we talked about initially.” Tony ( 21:12 - 21:58)
    • “Imagine reviewing code written by other people. It’s always hard because you had no idea what was going on when it was written. That was the idea behind the forward reasoning. You need to look at how people are working and how you can insert AI in a way that it seamlessly fits and provides some benefit to you while keeping you in your usual thought process. So, the way that I see it is you need to identify where the key pain points actually are in your current decision-making process and try to address those instead of just trying to solve the task entirely for users.” Tony (25:40 - 26:19)

    Links

    • LinkedIn: https://www.linkedin.com/in/zelun-tony-zhang/
    • Augmenting Human Cognition With Generative AI: Lessons From AI-Assisted Decision-Making: https://arxiv.org/html/2504.03207v1
    Más Menos
    44 m
  • 171 - Who Can Succeed in a Data or AI Product Management Role?
    Jun 10 2025
    Today, I’m responding to a listener's question about what it takes to succeed as a data or AI product manager, especially if you’re coming from roles like design/BI/data visualization, data science/engineering, or traditional software product management. This reader correctly observed that most of my content “seems more targeted at senior leadership” — and had asked if I could address this more IC-oriented topic on the show. I’ll break down why technical chops alone aren’t enough, and how user-centered thinking, business impact, and outcome-focused mindsets are key to real success — and where each of these prior roles brings strengths and/or weaknesses. I’ll also get into the evolving nature of PM roles in the age of AI, and what I think the super-powered AI product manager will look like. Highlights/ Skip to: Who can transition into an AI and data product management role? What does it take? (5:29)Software product managers moving into AI product management (10:05)Designers moving into data/AI product management (13:32)Moving into the AI PM role from the engineering side (21:47)Why the challenge of user adoption and trust is often the blocker to the business value (29:56)Designing change management into AI/data products as a skill (31:26)The challenge of value creation vs. delivery work — and how incentives are aligned for ICs (35:17)Quantifying the financial value of data and AI product work(40:23) Quotes from Today’s Episode “Who can transition into this type of role, and what is this role? I’m combining these two things. AI product management often seems closely tied to software companies that are primarily leveraging AI, or trying to, and therefore, they tend to utilize this AI product management role. I’m seeing less of that in internal data teams, where you tend to see data product management more, which, for me, feels like an umbrella term that may include traditional analytics work, data platforms, and often AI and machine learning. I’m going to frame this more in the AI space, primarily because I think AI tends to capture the end-to-end product than data product management does more frequently.” — Brian (2:55) “There are three disciplines I’m going to talk about moving into this role. Coming into AI and data PM from design and UX, coming into it from data engineering (or just broadly technical spaces), and then coming into it from software product management. I think software product management and moving into the AI product management - as long as you’re not someone that has two years of experience, and then 18 years of repeating the second year of experience over and over again - and you’ve had a robust product management background across some different types of products; you can show that the domain doesn’t necessarily stop you from producing value. I think you will have the easiest time moving into AI product management because you’ve shown that you can adapt across different industries.” - Brian (9:45) “Let’s talk about designers next. I’m going to include data visualization, user experience research, user experience design, product design, all those types of broad design, category roles. Moving into data and/or AI product management, first of all, you don’t see too many—I don’t hear about too many designers wanting to move into DPM roles, because oftentimes I don’t think there’s a lot of heavy UI and UX all the time in that space. Or at least the teams that are doing that work feel that’s somebody else’s job because they’re not doing end-to-end product thinking the way I talk about it, so therefore, a lot of times they don’t see the application, the user experience, the human adoption, the change management, they’re just not looking at the world that way, even though I think they should be.” - Brian (13:32) “Coming at this from the data and engineering side, this is the classic track for data product management. At least that is the way I tend to see it. I believe most companies prefer to develop this role in-house. My biggest concern is that you end up with job title changes, but not necessarily the benefits that are supposed to come with this. I do like learning by doing, but having a coach and someone senior who can coach your other PMs is important because there’s a lot of information that you won’t necessarily get in a class or a course. It’s going to come from experience doing the work.” - Brian (22:26) “This value piece is the most important thing, and I want to focus on that. This is something I frequently discuss in my training seminar: how do we attach financial value to the work we’re doing? This is both art and science, but it’s a language that anyone in a product management role needs to be comfortable with. If you’re finding it very hard to figure out how your data product contributes financial value because it’s based on this waterfalling of “We own the model, ...
    Más Menos
    50 m
  • 170 - Turning Data into Impactful AI Products at Experian: Lessons from North American Chief AI Officer Shri Santhnam (Promoted Episode)
    May 27 2025

    Today, I'm chatting with Shri Santhanam, the  EVP of Software Platforms and Chief AI Officer of Experian North America. Over the course of this promoted episode, you’re going to hear us talk about what it takes to build useful consumer and B2B AI products. Shri explains how Experian structures their AI product teams, the company’s approach prioritizing its initiatives, and what it takes to get their AI solutions out the door. We also get into the nuances of building trust with probabilistic AI tools and the absolutely critical role of UX in end user adoption.

    Note: today’s episode is one of my rare Promoted Episodes. Please help support the show by visiting Experian’s links below:

    Links
    • Shri's LinkedIn
    • Experian Assistant | Experian
    • Experian Ascend Platform™ | Experian 
    Más Menos
    43 m
  • 169 - AI Product Management and UX: What’s New (If Anything) About Making Valuable LLM-Powered Products with Stuart Winter-Tear
    May 13 2025
    Today, I'm chatting with Stuart Winter-Tear about AI product management. We're getting into the nitty-gritty of what it takes to build and launch LLM-powered products for the commercial market that actually produce value. Among other things in this rich conversation, Stuart surprised me with the level of importance he believes UX has in making LLM-powered products successful, even for technical audiences. After spending significant time on the forefront of AI’s breakthroughs, Stuart believes many of the products we’re seeing today are the result of FOMO above all else. He shares a belief that I’ve emphasized time and time again on the podcast–product is about the problem, not the solution. This design philosophy has informed Staurt’s 20-plus year-long career, and it is pivotal to understanding how to best use AI to build products that meet users’ needs. Highlights/ Skip to Why Stuart was asked to speak to the House of Lords about AI (2:04)The LLM-powered products has Stuart been building recently (4:20)Finding product-market fit with AI products (7:44)Lessons Stuart has learned over the past two years working with LLM-power products (10:54) Figuring out how to build user trust in your AI products (14:40)The differences between being a digital product manager vs. AI product manager (18:13)Who is best suited for an AI product management role (25:42)Why Stuart thinks user experience matters greatly with AI products (32:18)The formula needed to create a business-viable AI product (38:22) Stuart describes the skills and roles he thinks are essential in an AI product team and who he brings on first (50:53)Conversations that need to be had with academics and data scientists when building AI-powered products (54:04)Final thoughts from Stuart and where you can find more from him (58:07) Quotes from Today’s Episode “I think that the core dream with GenAI is getting data out of IT hands and back to the business. Finding a way to overlay all this disparate, unstructured data and [translate it] to the human language is revolutionary. We’re finding industries that you would think were more conservative (i.e. medical, legal, etc.) are probably the most interested because of the large volumes of unstructured data they have to deal with. People wouldn’t expect large language models to be used for fact-checking… they’re actually very powerful, especially if you can have your own proprietary data or pipelines. Same with security–although large language models introduce a terrifying amount of security problems, they can also be used in reverse to augment security. There’s a lovely contradiction with this technology that I do enjoy.” - Stuart Winter-Tear (5:58)“[LLM-powered products] gave me the wow factor, and I think that’s part of what’s caused the problem. If we focus on technology, we build more technology, but if we focus on business and customers, we’re probably going to end up with more business and customers. This is why we end up with so many products that are effectively solutions in search of problems. We’re in this rush and [these products] are [based on] FOMO. We’re leaving behind what we understood about [building] products—as if [an LLM-powered product] is a special piece of technology. It’s not. It’s another piece of technology. [Designers] should look at this technology from the prism of the business and from the prism of the problem. We love to solutionize, but is the problem the problem? What’s the context of the problem? What’s the problem under the problem? Is this problem worth solving, and is GenAI a desirable way to solve it? We’re putting the cart before the horse.” - Stuart Winter-Tear (11:11)“[LLM-powered products] feel most amazing when you’re not a domain expert in whatever you’re using it for. I’ll give you an example: I’m terrible at coding. When I got my hands on Cursor, I felt like a superhero. It was unbelievable what I could build. Although [LLM products] look most amazing in the hands of non-experts, it’s actually most powerful in the hands of experts who do understand the domain they’re using this technology. Perhaps I want to do a product strategy, so I ask [the product] for some assistance, and it can get me 70% of the way there. [LLM products] are great as a jumping off point… but ultimately [they are] only powerful because I have certain domain expertise.” - Stuart Winter-Tear (13:01)“We’re so used to the digital paradigm. The deterministic nature of you put in X, you get out Y; it’s the same every time. Probabilistic changes every time. There is a huge difference between what results you might be getting in the lab compared to what happens in the real world. You effectively find yourself building [AI products] live, and in order to do that, you need good communities and good feedback available to you. You need these fast feedback loops. From a pure product management perspective, we ...
    Más Menos
    1 h y 1 m
  • 168 - 10 Challenges Internal Data Teams May Face Building Their First Revenue-Generating Data Product
    Apr 29 2025

    Today, I am going to share some of the biggest challenges internal enterprise data leaders may face when creating their first revenue-generating data product. If your team is thinking about directly monetizing a data product and bringing a piece of software to life as something customers actually pay for, this episode is for you. As a companion to this episode, you can read my original article on this topic here once you finish listening!

    Más Menos
    38 m
  • 167 - AI Product Management and Design: How Natalia Andreyeva and Team at Infor Nexus Create B2B Data Products that Customers Value
    Apr 16 2025
    Today, I’m talking with Natalia Andreyeva from Infor about AI / ML product management and its application to supply chain software. Natalia is a Senior Director of Product Management for the Nexus AI / ML Solution Portfolio, and she walks us through what is new, and what is not, about designing AI capabilities in B2B software. We also got into why user experience is so critical in data-driven products, and the role of design in ensuring AI produces value. During our chat, Natalia hit on the importance of really nailing down customer needs through solid discovery and the role of product leaders in this non-technical work. We also tackled some of the trickier aspects of designing for GenAI, digital assistants, the need to keep efforts strongly grounded in value creation for customers, and how even the best ML-based predictive analytics need to consider UX and the amount of evidence that customers need to believe the recommendations. During this episode, Natalia emphasizes a huge key to her work’s success: keeping customers and users in the loop throughout the product development lifecycle. Highlights/ Skip to What Natalia does as a Senior Director of Product Management for Infor Nexus (1:13)Who are the people using Infor Nexus Products and what do they accomplish when using them (2:51)Breaking down who makes up Natalia's team (4:05)What role does AI play in Natalia's work? (5:32)How do designers work with Natalia's team? (7:17)The problem that had Natalia rethink the discovery process when working with AI and machine learning applications (10:28)Why Natalia isn’t worried about competitors catching up to her team's design work (14:24)How Natalia works with Infor Nexus customers to help them understand the solutions her team is building (23:07)The biggest challenges Natalia faces with building GenAI and machine learning products (27:25)Natalia’s four steps to success in building AI products and capabilities (34:53)Where you can find more from Natalia (36:49) Quotes from Today’s Episode “I always launch discovery with customers, in the presence of the UX specialist [our designer]. We do the interviews together, and [regardless of who is facilitating] the goal is to understand the pain points of our customers by listening to how they do their jobs today. We do a series of these interviews and we distill them into the customer needs; the problems we need to really address for the customers. And then we start thinking about how to [address these needs]. Data products are a particular challenge because it’s not always that you can easily create a UX that would allow users to realize the value they’re searching for from the solution. And even if we can deliver it, consuming that is typically a challenge, too. So, this is where [design becomes really important]. [...] What I found through the years of experience is that it’s very difficult to explain to people around you what it is that you’re building when you’re dealing with a data-driven product. Is it a dashboard? Is it a workboard? They understand the word data, but that’s not what we are creating. We are creating the actual experience for the outcome that data will deliver to them indirectly, right? So, that’s typically how we work.” - Natalia Andreyeva (7:47)“[When doing discovery for products without AI], we already have ideas for what we want to get out. We know that there is a space in the market for those solutions to come to life. We just have to understand where. For AI-driven products, it’s not only about [the user’s] understanding of the problem or the design, it is also about understanding if the data exists and if it’s feasible to build the solution to address [the user’s] problem. [Data] feasibility is an extremely important piece because it will drive the UX as well.” - Natalia Andreyeva (10:50)“When [the team] discussed the problem, it sounded like a simple calculation that needed to be created [for users]. In reality, it was an entire process of thinking of multiple people in the chain [of command] to understand whether or not a medical product was safe to be consumed. That’s the outcome we needed to produce, and when we finally did, we actually celebrated with our customers and with our designers. It was one of the most difficult things that we had to design. So why did this problem actually get solved, and why we were the ones who solved it? It’s because we took the time to understand the current user experience through [our customer] interviews. We connected the dots and translated it all into a visual solution. We would never be able to do that without the proper UX and design in that place for the data.” - Natalia Andreyeva (13:16)“Everybody is pressured to come up with a strategy [for AI] or explain how AI is being incorporated into their solutions and platform, but it is still essential for all of my peers in product management to focus on the value [we’re] creating for ...
    Más Menos
    38 m
  • 166 - Can UX Quality Metrics Increase Your Data Product's Business Value and Adoption?
    Apr 1 2025
    Today I am going to try to answer a fundamental question: how should you actually measure user experience, especially with data products—and tie this to business value? It's easy to get lost in analytics and think we're seeing the whole picture, but I argue that this is far from the truth. Product leaders need to understand the subjective experience of our users—and unfortunately, analytics does not tell us this. The map is not the territory. In this episode, I discuss why qualitative data and subjective experience is the data that will most help you make product decisions that will lead you to increased business value. If users aren't getting value from your product(s), and their lives aren’t improving, business value will be extremely difficult to create. So today, I share my thoughts on how to move beyond thinking that analytics is the only way to track UX, and how this helps product leaders uncover opportunities to produce better organizational value. Ultimately, it’s about creating indispensable solutions and building trust, which is key for any product team looking to make a real impact. Hat tip to UX guru Jared Spool who inspired several of the concepts I share with you today. Highlights/ Skip to Don't target adoption for adoption's sake, because product usage can be a tax or benefit (3:00)Why your analytical mind may bias you—and what changes you might have to do this type of product and user research work (7:31)How "making the user's life better" translates to organizational value (10:17)Using Jared Spool's roller coaster chart to measure your product’s user experience and find your opportunities and successes (13:05)How do you measure that you have done a good job with your UX? (17:28) Conclusions and final thoughts (21:06) Quotes from Today’s Episode Usage doesn't automatically equal value. Analytics on your analytics is not telling you useful things about user experience or satisfaction. Why? "The map is not the territory." Analytics measure computer metrics, not feelings, and let's face it, users aren't always rational. To truly gauge user value, we need qualitative research - to talk to users - and to hear what their subjective experience is. Want *meaningful* adoption? Talk to and observe your users. That's how you know you are actually making things better. When it’s better for them, the business value will follow. (3:12)Make better things—where better is a measurement based on the subjective experience of the user—not analytics. Usable doesn’t mean they will necessarily want it. Sessions and page views don’t tell you how people *feel* about it. (7:39)Think about the dreadful tools you and so many have been forced to use: the things that waste your time and don’t let you focus on what’s really important. Ever talked to a data scientist who is sick of doing data prep instead of building models, and wondering, “why am I here? This isn’t what I went to school for.” Ignoring these personal frustrations and feelings and focusing only on your customers’ feature requests, JIRA tickets, stakeholder orders, requirements docs, and backlog items is why many teams end up building technically right, effectively wrong solutions. These end user frustrations are where we find our opportunities to delight—and create products and UXs that matter. To improve their lives, we need to dig into their workflows, identify frustrations, and understand the context around our data product solutions. Product leaders need to fall in love with the problems and the frustrations—these are the magic keys to the value kingdom. However, to do this well, you probably need to be doing less delivery and more discovery. (10:27)Imagine a line chart with a Y-axis that is "frustration" at the bottom to "delight" at the top. The X-axis is their user experience, taking place over time. As somebody uses your data product to do their job/task, you can plot their emotional journey. “Get the data, format the data, include the data in a tool, derive some conclusion, challenge the data, share it, make a decision” etc. As a product manager, you probably know what a use-case looks like. Your first job is to plot their existing experience trying/doing that use case with your data product. Where are they frustrated? Where are they delighted? Celebrate your peaks/delighters, and fall in love with the valleys where satisfaction work needs to be done. Connect the dots between these valleys and business value. Address the valleys—especially the ones that impede business value—and you’ll be on your way to “showing the value of your data product.” Analytics on your data product won’t tell you this information; the map is not the territory. (13:22)Analytics about your data product are lying to you. They give you the facts about the product, but not about the user. An example? “Time spent” doing a task. How long is too long? 5 minutes? 50? Analytics will tell you precisely ...
    Más Menos
    26 m