
EDINET-Bench: LLMs on Japanese Financial Tasks
No se pudo agregar al carrito
Add to Cart failed.
Error al Agregar a Lista de Deseos.
Error al eliminar de la lista de deseos.
Error al añadir a tu biblioteca
Error al seguir el podcast
Error al dejar de seguir el podcast
-
Narrado por:
-
De:
Acerca de esta escucha
The article introduces EDINET-Bench, a novel open-source Japanese financial benchmark designed to evaluate Large Language Models (LLMs) on complex financial tasks. This benchmark addresses the scarcity of challenging Japanese financial datasets for LLM evaluation, crucial for tasks like accounting fraud detection, earnings forecasting, and industry prediction. The EDINET-Bench dataset is automatically compiled from ten years of Japanese annual reports available through the Electronic Disclosure for Investors’ NETwork (EDINET). Initial evaluations indicate that even state-of-the-art LLMs perform only marginally better than logistic regression in some complex financial tasks, highlighting the need for domain-specific adaptation and further research. The project makes its dataset, benchmark construction code, and evaluation code publicly available to foster advancements in LLM applications within the financial sector.