株式会社ずんだもん技術室AI放送局

De: 株式会社ずんだもん技術室AI放送局
  • Resumen

  • AIやテクノロジーのトレンドを届けるPodcast。平日毎朝6時配信。朝の通勤時間や支度中に情報キャッチアップとして聞いてほしいのだ。(MC 月:春日部つむぎ、火水木:ずんだもん、金:お嬢様ずんだもん)
    Más Menos
Episodios
  • 株式会社ずんだもん技術室AI放送局 podcast 20250508
    May 7 2025
    関連リンク AIエージェントCline、freeeはどうやって全社導入した? freeeでは、GitHub Copilotなどに加え、特に開発スタイルを変える可能性を秘めたAIエージェント「Cline」の全社導入を進めています。この記事では、freeeがどのようにAIツールの本格導入に取り組み、どのような課題を乗り越えたのかが解説されています。 AIツールの導入は、従来のツールと異なり、セキュリティリスクやコスト管理など特有の難しさがあります。freeeではこれに対応するため、二つの仕組みを導入しました。一つは「AI特区制度」で、安全なサンドボックス環境などで一部のチームが限定的にツールを試すことで、現場での利用感や課題を素早く洗い出します。もう一つは「AI駆動開発チーム」で、特区で見つかった課題への対処や、全社導入のための基盤開発、ガイドライン策定、導入効果の測定などを担う専門チームです。 この体制のもと、freeeではまずAI特区でツールを検証し、うまくいきそうなものについて、特区で得た知見をもとに全社展開のためのガイドラインやセキュリティ基盤を整備し、その後全社へ展開・運用するという流れで進めています。 Clineの導入においては、主に三つの壁に直面しました。 一つ目は「セキュリティ」です。社内コードが学習に使われたり、機密情報が流出したり、危険なコマンドが実行されたりするリスクです。これに対しては、学習にデータが使われないAmazon Bedrockを採用し、さらに社内基盤に独自プロキシを立てて、機密情報のマスキングや危険なコマンドのブロックを行いました。 二つ目は「コスト」です。AIツールの多くは利用量に応じた課金で、コスト予測が難しい点が課題です。freeeでは、Amazon Bedrockにタグ付けしたり、プロキシでリクエストログを詳細に計測したりすることで、どのツールにどれだけコストがかかっているかをリアルタイムで監視・可視化し、利用状況や費用対効果を把握できるようにしました。 三つ目は「AIリテラシー」です。ツールは使い方で効果が大きく変わる上、誤った使い方をするとセキュリティリスクにもつながります。対策として、安全な利用を促す共通ルールの策定や、セキュリティリスクのある機能の利用制限、さらには既存のセキュリティ対策と組み合わせた多層的な防御を行っています。 freeeは今回のCline導入を通じて、AIツール導入にはリスクと効果を天秤にかけた判断や、システム的・組織的な専用対策が不可欠であること、またツールごとの特性に合わせた対策が重要であることを学びました。Clineは既に多くの開発者に利用されており、今後はより詳細な効果検証や、AIツール前提の開発フローへのシフトを目指していくとのことです。 この記事は、freeeがAIエージェントの全社導入にどう取り組み、技術的な課題や組織的な課題にどう向き合ったかを知る上で、非常に参考になる事例と言えるでしょう。 引用元: https://developers.freee.co.jp/entry/ai-cline-rolling-out I built an AI code review agent in a few hours, heres what I learned AIコードレビューエージェントを自作した経験に基づく記事です。PRの差分をLLMに送り問題点を見つけさせる仕組みで、GitHub Copilot Reviewなどの類似ツールと比較し、有用性を検証しています。基本的なエージェントは数時間で構築可能ですが、LLMは指示に従わないことがあり、コード全体の文脈理解が不十分だと的外れな提案をすることが課題です。記事では、市販のエージェントを利用するより、自社で完全に制御できるエージェントを開発するためのフレームワークの将来性に期待を寄せています。 引用元: https://www.sourcebot.dev/blog/review-agent-learnings 10分くらいでできるA2Aのはじめ方 この記事は、Google製のA2Aプロトコルを使った複数AIエージェント連携のチュートリアルを解説します。A2Aとは、異なるAIサービス(チャットボット、画像生成、為替変換など)を連携させるプロトコルです。 記事では、複数のエージェントをA2Aで接続し、統合チャットUIから対話・実行できるデモを構築する手順を説明します。セットアップ、APIキー取得、リモートエージェント(経費申請、画像生成、為替)、...
    Más Menos
    Menos de 1 minuto
  • 株式会社ずんだもん技術室AI放送局 podcast 20250507
    May 6 2025
    関連リンク DoomArena: A framework for Testing AI Agents Against Evolving Security Threats この論文は、「AIエージェント」と呼ばれる、私たちの代わりに様々な作業を自動で行ってくれるプログラムのセキュリティをしっかり評価するための新しい仕組み「DoomArena」について紹介しています。AIエージェントはこれから色々な場所で活躍が期待されていますが、もし悪意のある攻撃に弱かったら困りますよね。そこで、どんな脅威に対してどのくらい強いのかをテストすることがとても重要になります。 DoomArenaは、このセキュリティテストをもっとやりやすくするために、以下の3つの考え方で作られています。 プラグイン可能: Webサイトを操作するエージェントや、他のツールを呼び出して使うエージェントなど、現在ある様々なエージェントの実行環境に簡単に追加して使えます。設定可能: どんな部分を攻撃対象にするか、どのような脅威を想定するか(例えば、悪いユーザーが操作する場合か、エージェントが使っている環境自体が悪い場合かなど)を細かく設定できます。モジュール式: 攻撃手法自体と、その攻撃をどの環境で実行するかを分けられるので、一度作った攻撃を色々な種類のエージェントや環境に対して試すことができます。 DoomArenaを使うことで、新しい種類の脅威にも対応しやすくなったり、これまでに考えられていた様々な攻撃手法を組み合わせて、より厳しく、きめ細かいセキュリティテストができるようになります。また、エージェントが持つ様々な弱点(脆弱性)と、本来の性能とのバランス(トレードオフ)を分析することも可能です。 このフレームワークを使って、現在最新のAIエージェントをテストしたところ、いくつか面白いことがわかりました。 最新のエージェントでも、想定する脅威の種類(悪意のあるユーザーによるものか、環境によるものかなど)によって、どのくらい脆弱かが異なり、全ての脅威に対して完璧に強いエージェントは見つかりませんでした。複数の攻撃を同時に仕掛けると、個別の攻撃よりもずっと効果的になる場合が多いです。特定のルール(ガードレール)で動きを制限するような簡単な防御策は効果が薄い傾向がありましたが、高性能な最新のAIモデル(LLM)を使った防御策はより有効なようです。 このDoomArenaフレームワークは公開されており、AIエージェントの開発者やセキュリティに関心のあるエンジニアが利用できるようになっています。AIエージェントをより安全に開発していく上で役立つツールと言えるでしょう。 引用元: https://arxiv.org/abs/2504.14064 LLM Performance Benchmarking: Measuring NVIDIA NIM Performance with GenAI-Perf LLM(大規模言語モデル)を使ったアプリケーションを開発する際、その性能を把握することは非常に重要です。これは、どこに改善の余地があるかを見つけたり、サービス品質(レイテンシなど)と処理能力(スループット)のバランスを調整したり、どれくらいの数のサーバーが必要かを見積もったりするために役立ちます。 この記事では、LLMの性能を測るためのツール「NVIDIA GenAI-Perf」と、NVIDIAが提供するLLM推論サービス「NVIDIA NIM」を組み合わせてMetaのLlama 3モデルの性能を評価する方法が解説されています。 GenAI-Perfは、LLMサービスの応答性能をクライアント側から測定できるツールです。具体的には、最初の単語が表示されるまでの時間(Time to First Token: TTFT)、単語が出てくる間隔(Inter-token latency: ITL)、1秒あたりの単語数(Tokens per second: TPS)、1秒あたりのリクエスト数(Requests per second: RPS)といった重要な指標を測ることができます。GenAI-Perfは業界標準となっているOpenAI APIの仕様に準拠した多くのLLMサービスに対応しています。 NVIDIA NIMは、LLMを素早く簡単に、そして高性能に動かすためのソフトウェアパッケージです。高性能なLLM(例えばLlama 3)をOpenAI API互換の形式で提供できるのが特徴です。 記事では、実際にNIMを使ってLlama 3モデルを起動し、次にGenAI-Perfを使って性能を測定する手順が紹介されています。具体的なコマンド例や、入力や出力の文章の長さ、同時に処理するリクエスト数(同時接続数)...
    Más Menos
    Menos de 1 minuto
  • 私立ずんだもん女学園放送部 podcast 20250502
    May 1 2025
    関連リンク ClineとDDDと私 この記事は、「AIちょっと苦手おじさん」だった筆者が、AIエージェント「Cline」を使い始めた経験と、開発現場での具体的な活用方法について紹介しています。特に、DDD(ドメイン駆動設計)などの考え方を取り入れた保守性の高いコードベースが、AI活用にいかに重要であるかを強調しています。 筆者は、VSCode拡張機能のClineを、GitHub Copilot経由でClaude 3.5 Sonnetモデルと組み合わせて使用しています。最初はタスクの指示の粒度や効率的な進め方に悩みましたが、試行錯誤の結果、効果的な使い方が見えてきました。 AIに開発タスクを任せる上で、なぜ保守性の高いコードが重要なのでしょうか。それは、AIが正確なアウトプットを出すために必要な「コンテキスト情報」を小さく抑えることができるからです。複雑な全体像を知らなくても、特定の小さな部分だけを理解すれば作業できるようなコード(「コンテキストの局所化」)は、AIにとっても扱いやすいのです。DDDやクリーンアーキテクチャは、関心事を分離し、このコンテキストを局所化するのに役立ちます。 また、AIは自然言語で学習しているため、クラス名やメソッド名から振る舞いが予想しやすい、いわゆる「自然言語としての可読性が高い」コードは、AIにとっても理解しやすく、期待通りのコードを生成する可能性が高まります。現時点では、「AIフレンドリーなコード」は「人間が読みやすいコード」とほぼ同じだと言えるでしょう。 具体的なタスク分担の例として、新規機能開発におけるバックエンド(SpringBoot/Kotlin)とフロントエンド(React/TypeScript)でのClineの活用が紹介されています。 バックエンドでは、 UseCase(アプリケーションロジック)のユニットテスト実装Controller(UI層とUseCaseの連携)の実装Repository(ドメイン層とインフラ層の連携)の実装 といった、定型的な作業やモック設定が面倒な部分をClineに任せています。特に、DDDにおけるレイヤードアーキテクチャによって関心事が分離されていることが、AIに任せやすいタスクの切り出しに繋がっています。 フロントエンドでは、 デザインシステムに基づいたコンポーネントライブラリの実装アプリケーション固有の個別コンポーネント(API連携やフォーム処理など)の実装 などに活用しています。React/TypeScriptはVSCodeとの連携やAIモデルの学習量の多さから、より良いコード生成が期待できるようです。 Clineを効果的に使うためのTIPSとして、以下の点が挙げられています。 参考にしたい既存コードをVSCodeで開いておく(AIが参照しやすくなる)Plan(計画)段階でAIの応答を確認し、指示を調整してからAct(実行)する.clinerulesファイルにプロジェクト共通のルールを記述しておくClineとのやり取りを記録・共有する(振り返りやナレッジ共有のため)Clineに「キャラ付け」して楽しく使う まとめとして、DDDのようなレイヤードアーキテクチャによる関心事の分離は、AIが必要とするコンテキストを減らし、効率的なタスク分担を可能にすることが筆者の経験から分かったそうです。AIの進化にも期待しつつ、今後も人間が理解しやすい「ヒューマンリーダブルなコードベース」を維持していくことの重要性を改めて認識しています。新人エンジニアの皆さんも、こういったAIツールを使いこなし、開発をより効率的で楽しいものにしていきましょう。 引用元: https://tech.codmon.com/entry/2025/05/01/132700 AIエージェントを使って実際にアプリ開発→リリースした経験・知見を共有する この記事では、AIエージェント「Claude Code」を使ってiOSアプリ「電光石火」を実際に開発・リリースした経験から得られた知見が共有されています。AIによるコーディングツールは増えていますが、プロダクトとして完成させた例はまだ少ないため、実践的な情報として参考になります。 著者が感じたAIエージェントの最大のメリットは、開発速度の向上です。体感で通常の3〜5倍速く開発できたとのこと。簡単な指示で動くコードをすぐに生成できるため、ゼロから考えるよりも、まずAIにたたき台となるコードを書かせ、それをベースに作業を進めるのが非常に...
    Más Menos
    Menos de 1 minuto
adbl_web_global_use_to_activate_webcro805_stickypopup

Lo que los oyentes dicen sobre 株式会社ずんだもん技術室AI放送局

Calificaciones medias de los clientes

Reseñas - Selecciona las pestañas a continuación para cambiar el origen de las reseñas.