Sculpting Data for ML Audiolibro Por Jigyasa Grover, Rishabh Misra arte de portada

Sculpting Data for ML

The first act of Machine Learning

Muestra de Voz Virtual
Prueba por $0.00
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.

Sculpting Data for ML

De: Jigyasa Grover, Rishabh Misra
Narrado por: Virtual Voice
Prueba por $0.00

Escucha con la prueba gratis de Plus

Compra ahora por $9.99

Compra ahora por $9.99

Confirma la compra
la tarjeta con terminación
Al confirmar tu compra, aceptas las Condiciones de Uso de Audible y el Aviso de Privacidad de Amazon. Impuestos a cobrar según aplique.
Cancelar
Background images

Este título utiliza narración de voz virtual

Voz Virtual es una narración generada por computadora para audiolibros..

Acerca de esta escucha

In the contemporary world of Artificial Intelligence and Machine Learning, data is the new oil. For Machine Learning algorithms to work their magic, it is imperative to lay a firm foundation with relevant data. Sculpting Data for ML introduces the readers to the first act of Machine Learning, Dataset Curation. This book puts forward practical tips to identify valuable information from the extensive amount of crude data available at our fingertips. The step-by-step guide accompanies code examples in Python from the extraction of real-world datasets and illustrates ways to hone the skills of extracting meaningful datasets. In addition, the book also dives deep into how data fits into the Machine Learning ecosystem and tries to highlight the impact good quality data can have on the Machine Learning system's performance.
What's Inside?
  • Significance of data in Machine Learning
  • Identification of relevant data signals
  • End-to-end process of data collection and dataset construction
  • Overview of extraction tools like BeautifulSoup and Selenium
  • Step-by-step guide with Python code examples of real-world use cases
  • Synopsis of Data Preprocessing and Feature Engineering techniques
  • Introduction to Machine Learning paradigms from a data perspective
    This book is for Machine Learning researchers, practitioners, or enthusiasts who want to tackle the data availability challenges to address real-world problems.
    The authors Jigyasa Grover & Rishabh Misra are Machine Learning Engineers by profession and are passionate about tackling real-world problems leveraging their data curation and ML expertise.
    The book is endorsed by leading ML experts from both academia and industry. It has forewords by:
  • Julian McAuley, Associate Professor at University of California San Diego
  • Laurence Moroney, Lead Artificial Intelligence Advocate at Google
  • Mengting Wan, Senior Applied Scientist at Microsoft
Programación Inteligencia artificial Ciencia de datos Aprendizaje automático
adbl_web_global_use_to_activate_T1_webcro805_stickypopup
Todavía no hay opiniones